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NON-LOCAL NON-LINEAR EQUATIONS OF WIND WAVES OVER AN UNEVEN BOTTOM* 

S.YU. DOBROKHOTOV, P.N. ZHEVANDROV and V.M. KUZ'MINA 

The evolution of a two-layer water-air medium under the action of a wind 
is treated in the weak non-linearity approximation. Here, together with 
the effects studied in /l-3/, we present, using an operator method /4, 5/, 
analogies of the Boussinesq equations without any assumption regarding 
the shallowness of the water reservoir and also taking account of the 
actipn of a wind but under the assumption that the amplitudes of the 
corresponding wave processes are small and the average velocity of the 
wind and the bottom of the reservoir are specified functions which vary 
"slowly" with the horizontal coordinates and time. Non-local (pseudo- 
differential) equations are obtained which describe the behaviour of the 
medium being studied taking account of the quadratic and cubic non-linear 
terms. Asymptotic solutions of these equations which take account of weak 
resonance interactions are constructed using the methods in /6, 7/. 
Algorithms are given for deriving the analogous equations and the con- 
struction of their asymptotic solutions when account is taken of an 
arbitrary degree of non-linearity. 

*Prikl.Matem.Mekhan.,51,5,798-806,1987 
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1. Reduction of the initial problem to a problem on the free boundary. The 
evolution of a two-layer water-air medium under the action of a wind in a reservoir with an 
uneven bottom is considered under the following assumptions: the water and air are incom- 
pressible, non-viscous, the velocity field in the air consists of a specified average velocity 
and perturbations which are small compared with this velocity, I' = (U, + ul, llz + 2~~. wZ), and 
the motion of the water is described by a velocity potential @ (z,z, t). Here t is the time, 
z = (X1,%) are the horizontal coordinates, z is the vertical coordinate and .Z=O 
corresponds to the unperturbed boundary of separation between the two media. The bottom of 
the water reservoir is described by the equation z = -D(x) while the free boundary is 
described by the equation z = n (x, t). The function D(.z)> 0 is specified. 

The initial conditions consist of the equations for the conservation of mass and momentum 
and the following boundary conditions: on the bottom of the water reservoir (the solid wall), 
on the boundary of separation (dynamic and kinematic) and on the upper boundary of the 
driving layer (the perturbations are negligibly small as z--t 00). The evolution of the 
medium being studied is considered at times - L/1/3, where h - Um2/g, L(h = h/L (( 1) are 
the characteristic wavelength and acceleration length for the wave processes being studied, 
U, is the average velocity of the wind on the upper boundary of the driving layer and g is 
the acceleration due to gravity. The dimensions of the water reservoir are assumed to be 
much greater than L which excludes the influence of bank effects from the treatment. 

bet us introduce the dimensionless parameters 6 = pz/pI (( 1 and E = no/h whichdescribe 
the ratio of the densities of air and water and the characteristic inclination of the waves. 
Here no is the characteristic amplitude of the swell studied and characterizes the non- 
linearity, which is assumed to be small and associated with 6 by means of the relationship 
6 = Ea. We assume that the relief of the bottom of the water reservoir and the mean velocity 
of the wind are slowly varying functions of 5 and t: 

au, aJ. 
at--r i=i,2, v= &,& 

( 2) 

In the dimensionless variables x' = xIL, z’ = z/h, t’ = tT/slL, the system of equations and 
boundary conditions describing the evolution of the medium being studied take the form, after 
the pressure has been eliminated, 

2 = eq (5, t) 
hV (q + h’J’,, + ‘1,~ 1 hV@ I2 + ‘/zem,,a) + 

&hVq (a/az) (h@, + ‘/SE ( hV@ (2 + '/,e@,,") = 
e2 {(I -I- ehw, i- e2hVw.U + e*w,w) hVq + hu, + 
e (u*hV) u + U,w + eu,w} 

hqt + &hVq.u = w 

hqt + ehVn.hVQ) = Dz 

(1.1) 

z = -D (x), Q + hVD.hVQ = f& (1.2) 
eq (I, t) _( z < 00 (1.3) 
hut, + (6’iaz) {(U.hV)u + e (u.hV)u + (u.hV) U + 

U,w + EWU‘} = h2Vwz + hV (U.hVw + Eu.hVw + ewzw) 

en (x, t) < z< 00, hV.u + w, = 0 

-D (z) Q z < ~9 (x, t), h2AQ, + ‘Z& = 0 

z+.co, u*, w- 0, i = 1, 2 

rl’ (g’, t’) = q (x, t)/q,, 0’ (5’, z’, t’) = 0 (5, z, t)l(q,fi%, 
U’ (I’, t’, z’) = u (x. t, z)/l/& (u’, w’) (d, t’, z’) = 

(~7 w) (5, t, z)l(qo 1/i%), D’ (5’) = D (x)/h 

(1.4) 

(1.5) 

(1.6) 

Here, ZL = (Ui,u,), U = (U,, U,), A = V2, a,.e, is a scalar product and the primes are omitted. 
The condition of "slowness" in the variation of the relief of the bottom and the average 
wind velocity in dimensionless variables means that the functionsD(x) and U (x, t, z) are 
smooth and independent of h. 

Let us consider the Cauchy-Poisson problem for system (l.l)-(1.6), that is, it is assumed 
that a, @*, u and w on the free boundary are specified when t=O and we shall study 
solutions which are bounded in Rx2 x R2+ and smoothly dependent on e and irregularly on h 
so that "ln,rRAu 

o’-“‘*’ ’ 

aPa#a!Y 
-/h-lal-v, IaI.j3,y=O,l,... 
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on the functions CD,, u, IL) and n. 
In the investigation of wave motions of the surface of a liquid, the natural procedure 

involves the elimination of the variable z and the reduction of the problem to an investigation 
of the equatins for the boundary of separation 1 (x,t) and the functions characterizing the 
potential 4, and the velocity in the air layer IL, u' in the variables + = (Xl, r,), t. These 
functions can be introduced unambiguously. For example, @, u and zocan be specified when 
z = 0 or the mean values of @,, u and w inthe corresponding layers, etc. 

In the case of the scheme being described here it is found to be most convenient to 
introduce the functions on the free boundary: 

'E = @ lLE9. u = ZL! jzzeil, $ = zl jrCzn (1.7) 

When there is no upper layer the functions (p and n for the corresponding system con- 
stitute the so-called canonical variables /8/. 

The elimination procedure for long wavelengths with weak dispersion without taking account 
of the wind is well-known and leads , under the assumptions that E= l/x, D =fi;ol in the seroth 
approximation with respect to h, to the wave equation in the next approximation to the 
Boussinesq equation and so on /9/. In the general case the execution of such a procedure 
without additional assumptions is, apparently, impossible. The assumption regarding the 
"slowness" of the variation in the relief of the bottom and the mean wind velocity makes it 
possible to carry out such a procedure and to reduce the problem to an investigation of a 
simpler system of equations for o,n, $ and L' and then to a scalar and even a pseudodifferen- 
tial equation for 'P which leads to a substantial reduction in the volume of calculations 
compared with the initial problem (at least, in the asymptotic analysis). Such a procedure 
has been carried out in /lO/*.(*Without taking account of the wind, in the paper: Dobrokhotov 
S.YU., Wultiphase asymptotics and Maslov's theory in the linear and non-linear equations of 
water waves, Voronezh, 1984, Deposited in the All-Union Institute for Scientific and Technical 
Information (~1~1~11, 3.07.84; Wo.4585-84). A similar approach was employed in /fl, 12/ in 
the proof of the existence and uniqueness of the solutions which describe surface waves without 
allowing for the wind. 

Since it is impossible to obtain exact formulae in the case of variable coefficients, 
we are only concerned here with expansions with respect to the parameter a with an accuracy 
which has been specified beforehand. In order to take account of the quadratic and cubic 
terms, it suffices to carry out the procedure for eliminating z up to terms of the order of 
G, and all subsequent formulae are therefore presented with an accuracy 0 1~~). The final 
equations are only considered with this degree of accuracy for the functions cpand n and have 
the form (a scheme for their derivation is presented in Sect.3) 

f1.8) 

(1.9) 

Here B,and B, are pseudodifferential operators and their symbols have the form 

R, = R, - ihR, + . . . 

The function R, is determined from the Rayleigh problem (3.3), lY,T,O= (dlJ/&z) izd and the 
notation &MG@ denotes B, [qB,cpl. 

On the left-hand side of Eq.U.8) which is predominant with respect to the parameter s, 
the occurrence*of the operator h*b may, generally speaking, lead to the appearance of 
additional solutions compared with the initial problem or to the disappearance of some of the 
solutions. This, however, does not occur if only bounded 'p and q are considered. 

Let us now pass from system (1.8), (1.9) to a consideration of a single equation in the 
function cp. After applying the operator haA to (1.9) and the expressions .iPAn from (1.8) 
with an accuracy U(e") and n from (1.8) with an accuracy O(G) Eq.Cl.9) is transformed 
into an equation for VF: 



629 

2 {h2Ahv, - (hdc7t) B,h$, + (hv- U,“) h*vtl + 
lJz”-h~vcp,,) = 0 (ES) 

This equation is a non-local analogue of the Boussinesq equation and reduces to it when 
.E = 1/z, D = l/ED1 in the first approximation with respect to h. 

It takes account of all dispersion terms as well as the effect of the wind. 

2. Weakly non-linear interactions of wind waves in a reservoir with an uneven bottom. 
Let us find certain asymptotic solutions of Eq.(l.lO). When E=O,6=h (1.10) admits of 
solutions in the form of "distorted" plane waves which, as h-+0, are rapidly oscillating 
functions /lo/. The asymptotic forms of such solutions have the form 

A (I, t) exp {iS (x, t)lh} + o (1) 

Naturally, a superpositioning of these solutions is also a solution. In particular, the 
solution of the Cauchy problem with the initial conditions 

t = 0, cp = A,” (5) exp {iSo (r)/h} + C.C. 

hq, = Aa0 (x) exp {is, (s)lh} + C.C. 

Alo (z) E Corn (R”), j = 1, 2, s, (2) E C- (I?*), vs, # 0 

(2.1) 

is a linear combination of two distorted plane waves travelling in opposite directions. 
In Eq.(2.1), C.C. denotes a complex-conjugate expression. 
The natural question arises concerning the existence of analogous solutions in the non- 

linear case and also regarding the law governing the superimpositioning of these solutions. 
The answer to this question is ambiguous and is determined by the form of the dependence of 
e on h. If e = O(F), then, in the predominant term (apart from corrections o(1) as h-t 0), 
it is found that non-linear effects only play a role when a <lll. 

In the case when a = If8 the problem of locating the leading term of the asymptotic 
form of the Cauchy problem being studied at the times being considered is proper. 

The following results hold. The leading term ofthe asymptotic solution of the Cauchy 
problem (l.lO), (2.1) subject to certain additional assumptions regarding the times tE IO, 
Tl has the form 

At the same time the equations for the phase &and the square of the modulus of the 
amplitude 1 A* 1 * remain the same as in the linear case. The phase is determined from the 

A+ (5, t) exp iiS+ (5, t)lhl + 
A_ (5, t) exp [is_ (5, t)lh] + h-“aAo (x, t) 

A+ (x, t) E Co‘= (R2 x I?+), A& E C- (I?’ x I?+) 

S, = --s_, A+ = if_, VS* # 0 

(2.2) 

Hamilton-Jacobi equation with an initial condition corresponding to (2.1): 

as*/at * H (5, VS*) = 0; t = 0, s, = -s_ = so (z), 

H (~7 P) = ( I P I th ( I P I D (4))% 
(2.3) 

and is expressed in terms of the solution X*, P* of a system of first-order ordinary dif- 
ferential equations (a Hamiltonian system) 

2' = H,, p’ = -I?,; t = 0, z = a, p = &So (a)li%.z (2.4) 
Then, under the assumption thatthe Jacobian J =det laX*lda I differs from zero for all 

tE IO, 2’1, we have 

t 
& (Xv t) = f & (a) + s (P*X.* - H (2%. Pf)) dz 

0 

The quantity IA* I* satisfies the equation 

f--' (ddt) (J I A* I”) = -2B1 (co,, P, I, t) a”~-’ I & I * 

where a = a*@, t) is the solution of the equation X* (a, t) = 5, a E supp .%O U supp A,", p = 
VS*, 0 = as*/at, the function BI = ImB, (see (1.10)) is determined from the Rayleigh 



630 

Eq. (3.3) and dldt is a dertivative along a trajectory (x*, p*) of system (2.4). 
Non-linearity only shows up in a phase correction which is determined from the equation 

for the amplitudes ((2.8), when N = 1). When determining this correction it is additionally 
necessary to solve the wave equation for A, ((2.9) when N = *&the right-hand side of which 
is proportional to the derivative of the square of the modulus of the amplitude. We note 
that, in the calculation of the velocity field, the last term in (2.2) gives a correction to 
the leading term of 0 (P/B). 

Hence, in the case of the Cauchy problem (l.lO), (2.1), the leading term of the asymptotic 
form is determined in a similar manner to that used in the linear case, and non-linearity 
only introduces a small additivephase correction. At the same time, the phase is substantially 
dependent on the inhomogeneities of the relief of the bottom while the effect of the wind only 
has an influence in the determination of the amplitude, which leads , as in the linear approxf- 
mation, to the appearance of an increment /lo/. 

Let us now consider the question concerning the superimpositioning of a large number of 
solutions, that is, for Eq.(l.lO) , we shall investigate the solution of the Cauchy problem 
with the initial conditions 

It is found that, 
term of the asymptotic 
form 

t = 0, ‘p = % (4, bf = -7% (4 (2.5) 
(of = 2, A,' (x) exp {~S~'(~)~~}, 1 = 1, 2 

Ak" E C; (I?“), Sh_o E Ca (Re), Sk“= - S”, 

Ak3 = T’.x= ‘ h 7 PSK” f 0, k=-t_l, . . ..&N 

subject to certain additional assumptions (vide infra), the leading 
form of fl.lOf, (2.5) is representable, as in the linear case, in the 

k = --2N,. . ., 2N, k#O (2.6) 

XAI, (I, t) exp {& (x, t)lh} -/- h-‘1% A, (x, t) 

Each of the phases & in (2.6) is, as before, a solution of the Cauchy problem for the 
Hamilton-Jacobi Eq.f2.3) (cf. (2.5)) 

t = 0, S,I-r = --s,1 = &"fx), I = 1 , I . .1 N (2.7) 

which, as previously, is expressed in terms of the solution of a Hamiltonian system which 
satisfies the conditions 

Generally speaking, the equations for the squares of the amplitudes are not obtained by 
the same means as in the linear case:they are substantially dependent on the occurrence of a 
resonance interaction between the individual waves. In order to describe this resonance 
interaction, we introduce into the treatment the functions S mnl = Sm -I- S, + S, with mutually 
different n, m, lE {+I, h% . . .) +2N} which satisfy one of the initial conditions (2.7) and 
the sets rrnnc of the zeros of the functions {f3S~n~ldtfH(s, VSmnl)). The following cases are 
possible. 

lo. For possible sets of m, n, I rm,,r = 0. In this case there is no resonance interaction. 
The equations for the square of the moduli of the amplitudes are defined in a similar manner 
as for the linear case. Non-linearity solely leads to the occurrence in the leading term of 
corrections to the phases which are found from equations which are analogous to the case when 
N = 1. 

2O. There exist sets of m,n and 1 such that rmnr = Ra while the remaining rmnI = @. 
We shall refer to such resonances as strong resonances. In this case the resonance interaction 
leads to the appearance of a new phase SK = LF=l with a number k+ m,n, I and non-linearity 
plays a role in the-determination ofthe leading term of the asymptotic form even in the 
equations for the squares of the moduli of the amplitudes IA& I=. The equations for the 

amplitudes and the smooth component with initial conditions corresponding to (2.5) have the 
form (a scheme for their derivation is presented in Sect.41 

.(2.8) 

t = 0, A,l-, = A,~, = l/2 (A,’ + iAL (H (5, VS$))-I) 
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A_2r = A,, = ‘la (Al’ - iAla (H (5, F'S;))-I) 

I= 1, 2, . . ., N 

Aott - V .(DVA,) = Z (a/at (I A,,, la (q,, 4 - Pm”)) - 

2V .(I Am 1’ cw~m)) 

t = 0, A,t = A, = 0, m = +I, . . ., $-2N 

(2.9) 

It is assumed here, as above, that the Jacobians Jk = det I aXk (a, t)laa I# 0 for all 

t E IO, Tl 9 a/&, is a derivative along a trajectory (X,, Pk) of a HamiltOnian system, Pk = 

VSR, cob = aSkli%, B, is defined in (l.lO), the summation in Z' is carried out over such m, 
n and 1 for which rmnl = R2 and the coefficients am, k Brnnlk are determined fromtheequalities 

amk = 2bk.-m b~k*%~ (Ok - %) $ Gk,-dhl - (pk - P,) X 

(%Pm + %Pk) - (‘W’m2Gk, -m - Pk.&, (ok - am)} + 

‘/z (@k’o,’ + Pk20,4 - pk2~k2@,2 + 3~k2~,4 - 6,k4pm2 - 

Pk2Pm2) - @k%,,‘Gk, -m (mk* - O,,,‘) 

bkm = [@k + %) (~kzo,na + 2Pk’&,) + Pk’~,,, + &,,2~k - 

Gm, -k hn”ka + ok%,2)j [&a, k - (mm + ~k)2]-’ 

G m.k=IPm+Pkth(IPm+PkID(~)) 

f%,nL = - @k~m2~1Pn2 + @kW,2Gi,,Cd&a + 

l/ZPkaPm(Pl’Pn f ~?%z2) + 1/aokao12 (Pr*Pn $ ~?~n) - 

Pm’%LP1~L%12 + 1/&%Jwn2Pn2 - %~,2~1 (PL + P7J2 + 

%%W%“~~.n - ‘/a”k”wlhzzo, + ~kPn* (Pm + PL) b,l + 
~kGm,&nl + Pk (%I + 01). Pnb,, + Pk.(P,,, + Pi)q$,~ + 
Ok2 [(% + 6%) 0,’ + (Lo,1 b,, 

3O. There exist m,n and 2 such that rmnl is not identical either with RBor with 0. 
This case is only possible if 9”” is non-linearly dependent on I and t which, in particular, 
is caused by inhomogeneities in the bottom, D (x). We shall refer to such resonances as weak 
resonances. For an arbitrary rmnl, the question regarding the determination of the leading 
term of the asymptotic solution remains open in this case. However, when r,,,,,, is a one- 
dimensional curve: L,,,,l = {x = x(&s), SEER’}, it is found that, subject to an additional 
condition on Smnl weak resonances do not make any contribution to the leading term of the 
asymptotic form (se: paragraph 4) and the equations for Ak and A,,, as in case (2) , have the 
form of (2.8), (2.9). This condition has the form 

(a/at) {StmnL f H (x, VSmn')} z 0 on rmnl (2.10) 

3. A scheme for eliminating x in order to obtain the equations on the 
free boundary. In order to eliminate z and reduce the problem to a system of equations 
on the free boundary we express G&,, w,, a2 in (l.l), (1.4), when z = en, in termsof cp, v,+,n. 

Eqs.(l.2), (1.5) and the condition 'p = @ I=_,, constitute an elliptic boundary value 

problem in the layer -D(x)< zQ eq. By virtue of the assumption concerning the regular 
dependence on e,the functions @ = @,-I- E@~ + . . . where cDj, j>O satisfy a chain of 
recurrence problems inthe layer -D < z< 0 /13/: 

The solutions of 
differential operator 

CD,, + l~~A6i'~ = 0 

z = -D (I), Q + hVD. hV@,, = 0; 

z = 0, a+= cp, 

(3.1) 

(fpo = cp, Cpj = -Zqj-"' ((j - m)!)-’ Ic+“~,/~Z.j-“J )z=O, 

m = 0, 1, . . ., j - 1, j > 1) 

(3.1) are expressed in terms of rpj(j> 0) in the form of an h-pseudo- 

m1 = R (5, --ihV, z, h) cp, (3.2) 

the symbol/14/of which admits a regular expansion with respect to h as h+ + 0. The explicit 
form of the symbol oftheoperator R is given in /13, 15/. 

Similarly, Eqs.(l.3), (1.4) and (1.6) and the conditions w = v and u = $,when z = eq 
constitute a problem in the layer Erl<Z<00, the solution of which enables one to determine 
w, and a, when .z = en. By virtue of the assumption regarding the regular dependence on e, 
we have 

U = ZLg + EUr + . ..( w = wg + ew, + E2Wa + . . . 
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The expansion of uj, Wj,j> 0 in Taylor series in powers of E?J leads to boundary value 
problems in the even simpler "unperturbed" layer o<z<w. Allowing for the fact that, 
in order to obtain the solution of the initial problem with an accuracy of O(fY) , it is 
sufficient (see above) to consider the air layer in the quasilinear approximation, we retain 
solely the terms accompanying a0 from the resulting system (even inthelayer O,<z( w). 

In order to obtain greater accuracy with respect to E it is necessary to consider terms 
accompanying ak, k> 0. 

It is sufficient to obtain wol with an accuracy O(&)when 2, = Er). Here, we assume that 
the function w,, in the layer O< z< 00 is representable in the form of an h-pseudodif- 
ferential operator applied tothsfunction v: w,, = R,(x,t, -ihV. -ihd&. z, h) v. The symbol of 
this operator, as h-to, admits of the expansion: R, = R,, + (-ih) R,, + . . . . The functions 
R,, (12 0) are determined /lo/ from a chain of recurrence problems consisting of ordinary 
differential equations in z and boundary conditions when z = 0 and z-+00. The variables 
x,p, t and w occur in these problems as parameters. In particular, R,, is determined from 
the Rayleigh problem with the parameters x, P, t and w: 

(a + V*P) {(R,dz - I P l’Rx.4 - u,z+pR,o = 0 

z=O, R,,= l;z-+ca, R,,+O 
(3.3) 

4. A scheme for obtaining Eqs.(2.3), (2.8) and (2.9). We obtain Eqs.(2.3)- 
(2.9) in the following manner. We seek a solution of (1.10) cp f 'pl f cp%+... /5, 6/ and 
assume that the leading term 'pO can be represented in the form of a superimpositioning of 
the individual waves 

&ik exp (iSklh}, k = _tl, . . . +N 

S-k = --Sk, A, = A-kr VSI, # 0 

(‘PI and cpa are corrections to cp,,). BY substituting r+~ into (1.10) and equating the co- 
efficients accompanying h” and the powers of h, we obtain Eq.(2.3) for the determining the 
phases Sk. 

For the correction 'pr we have the equation 

hg@%3ta~, + B,cp, = ih’h [ZC,IIA,Al exp {i (s, + 
SI) / h}l -I- ( right-hand side of (2.9)); 2, n = +I., . ..+N, 

lf-n 

Application of the operator {hPas/dta -l-B,} to the first group of terms leads to the 
multiplication of each term by a quantity of the form {(om f o# + G,,,,}-1 while application 
of this operator to the second group of terms leads to the appearance of the smooth component 
A0 which satisfies Eq.(2.9). In this case application of the operator to the first group 
of terms is possible since the equality Sk = S,,, + St cannot be satisfied (for example, see 

/2/). 
Similarly, let us consider the equation for the correction 'pa. Here, unlike in the 

previous Case, it is now necessary to take account oftheresonance terms. From the equation 
for qn we obtain Eq. (2.8) for the amplitude A h. The resonance contribution to this equation 
only introduces those SkrSm,Sn,S1(k,m,n,l#O,k#-m,k#-n,k#-l,m# -n, mf-1, 
n.# - I), for which Sk = Smn' = S, + S, + Si in Rxa. In the case of weak resonance it turns 
out that, subject to condition (2.10) , application of the operator {haaVatP + B,} leads to 
the results o(1). In other words, weak resonances do not make a contribution to Eq.tZ.8) and 
this means that they do not make a contribution to the leading term of the asymptotic solution 
(2.2) /6/. 

Actually, let condition (2.10) be satisfied for the function F IS, + Sm + Si on the 
curve r c R,O. Then, the solution of the problem 

k$t, + Bo’p = hA (x, t) exp {iF (I, t)/h} (4.1) 

t = 0,cp = h,cp, = 0, A E Co” 

as h-+ + 0, is the quantity o(1). In fact, fOll_owing /7/, we represent the SOlutiOn Qf 
problem (4.1) as follows: 

t 

TJ= Z S rP* (2, t, 7) exp iiS* (x, t, r)/h) dz 
+,- 0 

(4.2) 
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We substitute (4.2) into (4.1) and after differentiating and applying the commutation 
formula for a h-pseudodifferentialoperator with an exponent /4/ under the integral sign and 
equating the coefficients accompanying similar powers of h, we obtain 

S;+ * H (x, vs*) = 0; t = 7, s* = F (5, z) (4.3) 
(J’)-‘1s (d/d+) [(J*)“q*l = 0 
t = z, $* = ?A (x, z) (2iH (I, VF))-' 

Here Xf (a,E,t),P*(a,g,t) is the solution of Fq.(2.4) with the initial conditions 
X*=a, P*=E when t=O and dldt* is the derivative along the trajectories X* (a,VF(a, 
T), t - T), P* (a, VF (a, 4, t - z). 

In (4.2) let us consider just the term with the plus sign (the term with a minus sign 
is treated in a similar manner) and apply the stationary-phase method to the integral in 
(4.2). For this purpose we calculate the derivative aSI&. Let us show that dS,ldt = 0. 
Actually dS,ldt = Srt + H,.VS, but S,, = -HP (.) VS,. It is obvious that, when t = T St.= Ft 

(x, z) + H (5, VT (x, z)). Then, in order that i)SI& should vanish at the point (~4 z"), it is 
necessary and sufficientthatthe condition X (x0, VS(r”,t,ro), r”- t)E r should be satisfied 
at this point. 

At the point@",+") we have 

Here, in the case of the function H and its derivatives, the arguments (X, P) are 
omitted, the arguments (XT 7) are omitted in the case of the function F, and the arguments 
(z, vs, z - t). in the case of the function X and P. 

It follows from (4.4) that, if IV& 1 = 0 at the point (x0, 7") then &,#O at this 
point by virtue of condition (2.10). 

Whence, according to /7/ (page 6591, the estimate 

s, (2, t, z) = (aiar) (F, (X (32, vs, T - t), q + 
H (X (x, VS, T - t), P (I, VS, t - d)) = Ftt + 

VF,. HP + H, (aX/aQ VS, + HP (aPi%).VSx + 

VFt (aXlc?E). VS, 

44.4) 

II cp 114 (RB) < const h"* 

follows. 
Hence, the leading term of the asymptotic form of (2.6) is determined by Eqs.(2.3), 

(2.8), (2.9) and the initial conditions (2.5). 
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ON THE SELFOSCILLATORY MODES OF MOTION OF A GAS IN PIPES* 

A.L. NI 

One-dimensional, non-linear selfexcited oscillations of an ideal gas in 
pipes are studied. One end of the pipe is closed, and boundary conditions 
connecting in prescribed manner the incident and reflected Riemann 
invariants are specified at the other end. Periodic solutions containing 
shock waves are constructed. A relation connecting the amplitude and the 
period of the oscillatory motion of the gas is established. The solutions 
obtained are analysed numerically for stability. The investigations 
are based mainly on the results of /l-6/ where the forced resonant and 
subresonant oscillations of a gas in open a closed pipes wexe studied. 

In /l-4/ the equations of oscillations were derived using a method analogous to the 
Poincar&%ighthill method of deformed coordinates. The problem was reduced to finding the 
solutions of ordinary differential equations on the smooth segments, followed by the in- 
troduction of discontinuities based on special additional assumptions. In 15, 6/asequential 
approach to solving the class of problems in question was described, within whose framework 
the problem of discontinuities was solved correctly by analysing the evolution of the com- 
pression wave. 

The formulation of the boundary value problems in the present paper is related, to a 
known degree, to the analogous formulations in the investigations of motion of a gas in a 
Hartman generator where the flows are also oscillatory **.(**Areviewofsuchinvestigations is 
givenin:Dulov V.G. and Maksimov V.P. Thermoacousticsofsemiclosedvolumes.Preprint 28-86, 
Nwosibirsk, Inst. ~eo~t~calandAppliedMechan~cs, SiberianSection, Academyof Sciences Of the 
B8SR# &986&i We&&l ttse-the appreaeh v /s, W teen&&se theeeeil'-"~cBtta,-aK 
cumbersome derivations given in these papers will be omitted. The arguments concerning the 
applicability of the isentropic approximation and the possibility of neglecting the change 
in the Riemann invariants when the characteristics interact with the shock waves, alsoretain 
their validity in the case of the oscillations investigated here. 

1. Equations of motion. The equations of gas dynamics in their characteristic form 
and in the commonly accepted notation are 171 

where the following operators of differentiation along the characteristics C+,C-,C" 
are used: 

*Prikl.Matem.Mekhan.,51,5,807-813,1987 


